USE AND MAINTENANCE MANUAL #### **Contents** | Contents" | 2 | |--|---| | Ordering spare parts" | 2 | | Guarantee" | 2 | | Machine certification and identification marking " | 3 | | CHAPTER 1 | | | Reference to accident-prevention regulations" 1.1 - Advice for the operator | 4
4 | | the tool" 1.3 - Electrical equipment according to European | 4 | | Standard "CENELEC EN 60 204-1"" 1.4 - Emergencies according to European Standard | 4 | | "CENELEC EN 60 204-1"" | 4 | | CHAPTER 2 | _ | | Recommendations and advice for use" 2.1 - Recommendations and advice for using the machine 4 | 4 | | CHAPTER 3 | | | Technical characteristics " 3.1 - Table of cutting capacity and technical details" | 5
5 | | CHAPTER 4 | | | | _ | | Machine dimensions - Transport - Installation | 5 | | | 5 | | Machine dimensions - Transport - Installation Dismantling " 4.1 - Machine dimensions " 4.2 - Transport and handling of the machine " | | | Machine dimensions - Transport - Installation Dismantling " 4.1 - Machine dimensions " 4.2 - Transport and handling of the machine " 4.3 - Minimum requirements for the premises | 5
5 | | Machine dimensions - Transport - Installation Dismantling | 5
5
5 | | Machine dimensions - Transport - Installation Dismantling " 4.1 - Machine dimensions " 4.2 - Transport and handling of the machine " 4.3 - Minimum requirements for the premises | 5
5 | | Machine dimensions - Transport - Installation Dismantling | 5
5
5
6 | | Machine dimensions - Transport - Installation Dismantling | 5
5
5
6
6 | | Machine dimensions - Transport - Installation Dismantling | 5
5
5
6 | | Machine dimensions - Transport - Installation Dismantling | 5
5
5
6
6
6 | | Machine dimensions - Transport - Installation Dismantling | 5 5 5 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 | | Machine dimensions - Transport - Installation Dismantling | 5 5 5 6 6 6 6 6 6 6 | | Machine dimensions - Transport - Installation Dismantling | 5 5 5 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 | | Machine dimensions - Transport - Installation Dismantling | 5 5 5 6 6 6 6 6 6 6 | | Machine dimensions - Transport - Installation Dismantling | 5 5 5 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 | | CHAPTER 7 | | |---|----------| | Regulating the machine" | 7 | | 7.1 - Disk head" | 7 | | 7.2 - Vice" 7.3 - Regulating arm blockage" | 7
7 | | 7.4 - Changing the disk" | 8 | | 7.5 - Changing the lubricating coolant pump" | 8 | | CHAPTER 8 | | | Routine and special maintenance" | 8 | | 8.1 - Daily maintenance" | 8 | | 8.2 - Weekly maintenance" | 8 | | 8.3 - Monthly maintenance" | 8 | | 8.4 - Six-monthly maintenance" | 8 | | 6.5 - Oli disposai | 9 | | 8.6 - Special maintenance" CHAPTER 9 | 9 | | Material classification and choice of tool" | 9 | | 9.1 - Definition of materials" | 9 | | 9.2 - Choosing the disk | 9 | | 9.3 - Teeth pitch" | 10 | | 9.4 - Cutting and advance speed" | 10 | | 9.5 - Running in the disk" | 10 | | 9.6 - Disk structure" | 10 | | 9.7 - Type of disks" | 10 | | Tooth shape" Tooth cutting angle" | 10
10 | | 9.7.1 - Table of recommended cutting parameters" | 11 | | 9.7.2 - Table of cutting speed according to disk diameter " | 11 | | CHAPTER 10 | | | Machine components" | 12 | | 10.1- List of spare parts" | 12 | | CHAPTER 11 | | | Wiring diagrams" " | 14 | | CHAPTER 12 | | | Troubleshooting" " | 15 | | 12.1- Blade and cutting diagnosis" | 15 | | 12.2- Electrical components diagnosis" | 17 | | CHAPTER 13 | | | Noise tests" | 17 | | Plates and labels" | 18 | ### Ordering spare parts When ordering spare parts you must state: MACHINE MODEL SERIAL NUMBER PART REFERENCE NUMBER Without these references WE WILL NOT SUPPLY the spares. See point 10.1 - list spare parts -. #### Guarantee - The Company guarantees that the machine to which this manual refers has been designed and built to comply with safety regulations and that it has been tested for functionality in the factory. - The machine is guaranteed for 12 months: the guarantee does not cover the electric motors, electric components, pneumatic components or any damage due to dropping or to bad machine management, the failure to observe maintenance standards or bad handling by the operator. - The buyer has only the right to replacement of the faulty parts, while transport and packing costs are at his expense. - The serial number on the machine is a primary reference for the guarantee, for after-sales assistance and for identifying the machine for any necessity. ## Machine certification and identification marking **MACHINE LABEL** | THOMAS S. via Pasubio, 32 36033 ISOLA VIC. | _ | € | |--|--------------|---| | MODEL | CUT 250 1 PH | | | ТҮР | · | | | SERIAL NUMBER | | | | YEAR OF MANUFACTURE | | | | e | • | € | | (Space reserved for the NAME and STAMP of the DEALER and/or IMPORTER) | |---| | | | r | ### 1 REFERENCETO ACCIDENT-PREVENTION REGULATIONS This machine has been built to comply with the national and community accident-prevention regulations in force. Improper use and/or tampering with the safety devices will relieve the manufacturer of all responsibility. #### 1.1 - Advice for the operator - Check that the voltage indicated on the plate, normally fixed to the machine motor, is the same as the line voltage. - Check the efficiency of your electric supply and earthing system; connect the power cable of the machine to the socket and the earth lead (yellow-green in colour) to the earthing system. - When the tool head is in rest position (raised), the toothed disk must be stationary. - It is forbidden to work on the machine without its shields (these are all white, blue or grey in colour). - Always disconnect the machine from the power socket before changing the disk or carrying out any maintenance job, even in the case of abnormal machine operation. - It is forbidden to disconnect the "man present" device, known more correctly in the EEC as the "safety switch with holddown action". - Always wear suitable eye protection. - Never put your hands or arms into the cutting area while the machine is operating. - Do not shift the machine while it is cutting. - Do not wear loose clothing with sleeves that are too long, gloves that are too big, bracelets, chains or any other object that could get caught in the machine during operation; tie back long hair. - Keep the area free of equipment, tools or any other object. - Perform only one operation at a time and never have several objects in your hands at the same time. Keep your hands as clean as possible. - All internal and/or internal operations, maintenance or repairs, must be performed in a well-lit area or where there is sufficient light from extra sources so as to avoid the risk of even slight accidents. # 1.2 - Location of shields against accidental contact with the tool - Grey metal shield screwed onto the disk head. - Self-regulating mobile blue plastic shield, fitted coaxially with the fixed shield. # 1.3 - Electrical equipment according to European Standard "CENELEC EN 60 204-1" which assimilates, with some integrating modifications, the publication "IEC 204-1" The electrical equipment ensures protection against electric shock as a result of direct or indirect contact. The active parts of this equipment are housed in a box to which access is limited by screws that can only be removed with a special tool; - The equipment is protected against splashes of water and dust. - Protection of the motor overload, is provided by a thermal probe. - In the event of a power cut, the specific start-up button must be reset. - The machine has been tested in conformity with point 20 of EN 60204. # 2 RECOMMENDATIONS AND ADVICE FOR USE ## 2.1 - Recommendations and advice for using the machine - The machine has been designed to cut metal building materials, with different shapes and profiles, used in workshops, turner's shops and general mechanical structural work. - Only one operator is needed to use the machine. - To obtain good running-in of the machine it is advisable to start using it at intervals of about half an hour. This operation should be repeated two or three times, after which the machine may be used continuously. - Before starting each cutting operation, ensure that the part is firmly gripped in the vice and that the end is suitably supported. - Do not use disks of a different size from those stated in the machine specifications. - If the disk gets stuck in the cut, release the running button immediately, switch off the machine, open the vice slowly, remove the part and check that the disk or its teeth are not broken. If they are broken, change the tool. - Before carrying out any repairs on the machine, consult the dealer or apply to THOMAS. # 3 TECHNICAL CHARACTERISTICS #### 3.1 - Table of cutting capacity and technical details | CUTTING
CAPACITY | | 0 | | | |---------------------|----|----|----|----------| | 90° | 30 | 70 | 65 | 100 x 45 | | 45° DX | 25 | 60 | 55 | 65 x 50 | | - Single-phase el. motor for 1-speed rotation - Reduction gear in an oil bath - Maximum disk diameter - Disk rotation speed - Vice opening - Machine weight | d disk | | |---|---------|------| | rotation | kW | 0.9 | | - Reduction gear in an oil bath | Ratio = | 1:32 | | - Maximum disk diameter | mm | 250 | | - Disk rotation speed | rpm | 40 | | - Vice opening | mm | 105 | | - Machine weight | kg | 80 | | | | | # MACHINE DIMENSIONS TRANSPORT INSTALLATION DISMANTLING #### 4.1 - Machine dimensions #### 4.2 - Transport and handling of the machine If the machine has to be shifted in its own packing, use a fork-lift truck or sling it with straps as illustrated. # 4.3 - Minimum requirements for the premises housing the machine - Mains voltage and frequency complying with the machine motor characteristics. - Environment temperature from -10 °C to +50 °C. - Relative humidity not over 90%. #### 4.4 - Anchoring the machine Position the machine on a firm cement floor, maintaining, at the rear, a minimum distance of 800 mm from the wall; anchor it to the ground as shown in the diagram, using screws and expansion plugs or tie rods sunk in cement, ensuring that it is sitting level. #### 4.5 - Instructions for electrical connection - The machine is not provided with an electric plug, so the customer must fit a suitable one for his own working conditions. - Before connecting the machine to the mains, make sure that your electrical installation is in good conditions and that a suitable thermo-magnetic protection is provided. - WIRING DIAGRAM FOR THE SINGLE-PHASE SYSTEM SOCKET FOR A 16A PLUG ## 4.6 - Instructions for assembly of the loose parts and accessories Fit the components supplied as indicated in the photo: - part. 1 Screw the lever onto the head and fix it - part. 2 Fit the bar holding rod - part. 3 Fix the pedestal firmly onto the base #### 4.7 - Disactivating the machine - If the sawing machine is to be out of use for a long period, it is advisable to proceed as follows: - 1) detach the plug from the electric supply panel - 2) release the head return spring - 3) empty the coolant tank - 4) carefully clean and grease the machine - 5) if necessary, cover the machine. #### 4.8 - Dismantling (because of deterioration and/or obsolescence) #### General rules If the machine is to be permanently demolished and/or scrapped, divide the material to be disposed of according to type and composition, as follows: - Cast iron or ferrous materials, composed of <u>metal alone</u>, are **secondary raw materials**, so they may be taken to an iron foundry for re-smelting after having removed the contents (classified in point 3); - 2) electrical components, including the cable and electronic material (magnetic cards, etc.), fall within the category of material classified as being assimilable to urban waste according to the laws of the European community, so they may be set aside for collection by the public waste disposal service; - old mineral and synthetic and/or mixed oils, emulsified oils and greases are special refuse, so they must be collected, transported and subsequently disposed of by the old oil disposal service. NOTE: since standards and legislation concerning refuse in general is in a state of continuous evolution and therefore subject to changes and variations, the user must keep informed of the regulations in force at the time of disposing of the machine tool, as these may differ from those described above, which are to be considered as a general guide line. # 5 MACHINE FUNCTIONAL PARTS #### 5.1 - Operating head Machine part composed of the parts that transmit movement (motor, reduction unit), the lubricating coolant pump and the electrical components. #### 5.2 - Vice System for gripping material during the cutting operation, operated with handwheel. It is provided with an anti-burr device for blocking the part that is to be cut. #### 5.3 - Bed Support structure for the OPERATING HEAD (rotating arm for gradual cutting, with respective blocking system), the VICE, the BAR STOP, and the housing for the cutting coolant TANK. # 6 OPERATING CYCLE Before operating, all the main organs of the machine must be set in optimum conditions (see the chapter on "**Regulating the machine**"). #### 6.1 - Starting up and cutting cycle - Press switch (3). The warning light lights up. - Place material to be cut in the vice (4) and clamp the part into place by handwheel (5). - Grip the handle (6) of the HEAD control arm and press the button, checking that the disk is turning in the direction indicated. - <u>ATTENTION</u>: In case of electrical drop-out or overload cutout, press switch (3) to start the machine again. # 7 THE MACHINE #### 7.1 - Disk head - The devices do not require any particular adjustments. #### 7.2 - Vice - The devices do not require any particular adjustments. #### 7.3 - Regulating arm blockage If there is insufficient blockage of the head arm in the desired position, slacken the screw (1) on the lever, hold the bush (2) in position, turn the lever to the left and tighten the screw. The cropper is now ready to start work, bearing in mind that the CUTTING SPEED and the TYPE of DISC - combined with a suitable descent of the head - are of decisive importance for cutting quality and for machine performance (for further details on this topic, see below in the chapter on "Material classification and choice of disks"). - When starting to cut with a new disk, in order to safeguard its life and efficiency, the first two or three cuts must be made while exerting a slight pressure on the part, so that the time taken to cut is about double the normal time (see below in the chapter on "Material classification and choice of disks" in the section on Running in the disk). BEFORE PERFORMING THE FOLLOWING OPERATIONS, THE ELECTRIC POWER SUPPLY AND THE POWER CABLE MUST BE COMPLETELY DISCONNECTED. #### 7.4 - Changing the disk To change the disk: - Release the mobile yellow, white or orange guard and turn it back. - Block a piece of wood in the vice and lean the disk on it. - Insert the special spanner provided and remove the screw (1), slackening it in a clockwise direction because it has a <u>left-handed</u> thread, then slip off the flange that holds the disk. - Fit the new disk, checking the cutting direction of the teeth, then replace the flange, the screw and the mobile white, yellow or orange guard. #### 7.5 - Changing the lubricating coolant pump - Takes yhe pipes of the lubricating-refrigerating system off. - Remove the fastening screws and replace the little pump, being careful to keep the driving stem centred on the drive shaft bearing. # ROUTINE 8 AND SPECIAL MAINTENANCE THE MAINTENANCE JOBS ARE LISTED BELOW, DIVIDED INTO <u>DAILY</u>, <u>WEEKLY</u>, <u>MONTHLY</u> AND <u>SIX-MONTHLY</u> INTERVALS. IF THE FOLLOWING OPERATIONS ARE NEGLECTED, THE RESULT WILL BE PREMATURE WEAR OF THE MACHINE AND POOR PERFORMANCE. #### 8.1 - Daily maintenance - General cleaning of the machine to remove accumulated shavings. - Top up the level of lubricating coolant. - Check the disk for wear. - Lift the head into a high position to avoid yield stress on the return spring. - Check functionality of the shields and emergency stops. #### 8.2 - Weekly maintenance - More accurate general cleaning of the machine to remove shavings, especially from the lubricant fluid tank. - Clean the filter of the pump suction head and the suction area. - Clean and grease the screw and the sliding guide of the vice. - Clean the disk housing. - Sharpen the disk teeth. #### 8.3 - Monthly maintenance - Check tightness of the screws on the motor, the pump, the jaws and shields. - Check that the shields are unbroken. - Grease the head hinge pin. #### 8.4 - Six-monthly maintenance - Change the oil in the reduction unit using oil type GEARCO 85W-140 by NATIONAL CHEMSERACH or MOBIL GLYCOLE 30 or KLUBER SINTHESO 460 EP or an equivalent oil, proceeding as follows: - Remove the connecting plug from the electric box and unscrew the head moving lever. - Drain off the old oil from the cap at the side (1). - Pour in new oil up to the mark (1), through the lever fixing hole, keeping the head in a horizontal position (2). - Reassemble all the parts. - Check continuity of the equipotential protection circuit. #### 8.5 - Oils for lubricating coolant Considering the vast range of products on the market, the user can choose the one most suited to his own requirements, using as reference the type SHELL LUTEM OIL ECO. THE MINIMUM PERCENTAGE OF OIL DILUTED IN WATER IS 8 - 10 %. #### 8.6 - Oil disposal The disposal of these products is controlled by strict regulations. Please see the Chapter on "Machine dimensions - Transport - Installation" in the section on *Dismantling*. #### 8.7 - Special maintenance Special maintenance operations must be carried out by skilled personnel. However, we advise contacting THOMAS or their dealer and/or importer. The term special maintenance also covers the resetting of protection and safety equipment and devices. # MATERIAL 9 CLASSIFICATION AND CHOICE OF TOOL Since the aim is to obtain excellent cutting quality, the various parameters such as hardness of the material, shape and thickness, transverse cutting section of the part to be cut, choice of the type of cutting disk, cutting speed and con-trol of head descent, must be suitably combined. These spe-cifications must therefore be harmoniously combined in a single operating condition according to practical consi- dera-tions and common sense, so as to achieve an optimum condi-tion that does not require countless operations to prepare the machine when there are many variations in the job to be performed. The various problems that crop up from time to ti-me will be solved more easily if the operator has a good know-ledge of these specifications. WE THEREFORE ADVISE YOU ALWAYS TO CHOOSE ORIGINAL SPARE DISKS THAT GUARANTEE SUPERIOR QUALITY AND PERFORMANCE. #### 9.1 - Definition of materials The table at the foot of the page lists the characteristics of the materials to be cut, so as to choose the right tool to use. #### 9.2 - Choosing the disk First of all the pitch of the teeth must be chosen, suitable for the material to be cut, according to these criteria: - parts with a thin and/or variable section such as profiles, pipes and plate, need close toothing, so that the number of teeth used simultaneously in cutting is from 3 to 6; - parts with large transverse sections and solid sections need widely spaced toothing to allow for the greater volume of the shavings and better tooth penetration; - parts made of soft material or plastic (light alloys, mild bronze, teflon, wood, etc.) also require widely spaced toothing. | | | | CHARACTERI | STICS | | | | | |---|--|-----------------------------------|-----------------------------|--------------------------------------|------------------------------|---------------------------|-----------------------------|---| | USE | l
UNI | D
DIN | F
AF NOR | GB
SB | USA
AISI-SAE | Hardness
BRINELL
HB | Hardness
ROCKWELL
HRB | R=N/mm2 | | Construction steels | Fe360
Fe430
Fe510 | St37
St44
St52 | E24
E28
E36 | 43
50 | | 116
148
180 | 67
80
88 | 360÷480
430÷560
510÷660 | | Carbon
steels | C20
C40
C50
C60 | CK20
CK40
CK50
CK60 | XC20
XC42H1

XC55 | 060 A 20
060 A 40

060 A 62 | 1020
1040
1050
1060 | 198
198
202
202 | 93
93
94
94 | 540÷690
700÷840
760÷900
830÷980 | | Spring steels | 50CrV4
60SiCr8 | 50CrV4
60SiCr7 | 50CV4 | 735 A 50
 | 6150
9262 | 207
224 | 95
98 | 1140÷1330
1220÷1400 | | Alloyed steels for
hardening and
tempering and for
nitriding | 35CrMo4
39NiCrMo4
41CrAlMo7 | 34CrMo4
36CrNiMo4
41CrAlMo7 | 35CD4
39NCD4
40CADG12 | 708 A 37

905 M 39 | 4135
9840
 | 220
228
232 | 98
99
100 | 780÷930
880÷1080
930÷1130 | | Alloyed casehardening steels | 18NiCrMo7
20NiCrMo2 | 21NiCrMo2 | 20NCD7
20NCD2 | En 325
805 H 20 | 4320
4315 | 232
224 | 100
98 | 760÷1030
690÷980 | | Steel for bearings | 100Cr6 | 100Cr6 | 100C6 | 534 A 99 | 52100 | 207 | 95 | 690÷980 | | Tool steel | 52NiCrMoKU
C100KU
X210Cr13KU
58SiMo8KU | 56NiCrMoV7
C100W1
X210Cr12 | Z200C12
Y60SC7 | BS 1
BD2 - BD3 | S-1
D6 - D3
S5 | 244
212
252
244 | 102
96
103
102 | 800÷1030
710÷980
820÷1060
800÷1030 | | Stainless
steel | X12Cr13
X5CrNi1810
X8CrNi1910
X8CrNiMo1713 | 4001
4301

4401 | Z5CN18.09

Z6CDN17.12 | 304 C 12

316 S 16 | 410
304

316 | 202
202
202
202 | 94
94
94
94 | 670÷885
590÷685
540÷685
490÷685 | | Copper alloys
Special brass
Bronze | ys Aluminium copper alloy G-CuAl11Fe4Ni4 UNI 5275 220 98 620÷685 | | | | | | | | | Cast iron | Gray pig iron
Spheroidal gra
Malleable cast | | G25
GS600
W40-05 | 212
232
222 | 96
100
98 | 245
600
420 | | | #### 9.3 - Teeth pitch As already stated, this depends on the following factors: - hardness of the material - dimensions of the section - thickness of the wall. | | S (MM) | PICTH | SHAPE | SPEED | |-------------|----------|-------|-------------|-------| | | up to 2 | 4 - 6 | B
shaped | 2 | | S | 2 ÷ 5 | 8 | C
solid | 2 | | | 5 ÷ 10 | 8 | C
solid | 1 | | | over 10 | 8 | C
solid | 1 | | s /// s /// | up to 20 | 8 | C
solid | 1 | | | 20 ÷ 50 | 10 | C
solid | 1 | #### 9.4 - Cutting and advance speed The cutting speed (m/min) and the advance speed (cm²/min = area travelled by the disk teeth when removing shavings) are limited by the development of heat close to the tips of the teeth. - The cutting speed is subordinate to the resistance of the material (R = N/mm²), to its hardness (HRC) and to the dimensions of the widest section. - Too high an advance speed (= disk descent) tends to cause the disk to deviate from the ideal cutting path, producing non rectilinear cuts on both the vertical and the horizontal plane. #### 9.5 - Running in the disk When cutting for the first time, it is good practice to run in the tool making a series of cuts at a low advance speed (= $30-35 \text{ cm}^2/\text{min}$ on material of average dimensions with respect to the cutting capacity and solid section of normal steel with R = $410-510 \text{ N/mm}^2$), generously spraying the cutting area with lubricating coolant. #### 9.6 - Disk structure The most commonly used disks are made of extra high speed steel (HHS) of **normal quality** (HHS/DMo5) or **superior quality** (HHS/Mo5 + Co5) with a treated tooth, which differentiates them from the former on account of the high value of structural resistance, greater resistance to seizing, absence of stress in the mass and a better holding of lubricating coolant during work. #### 9.7 - Type of disks The disks differ essentially in their constructive characteristics, such as: - Tooth shape - Tooth cutting angle #### Tooth shape The profile of the toothing depends on the size, shape and thickness of the section to be cut, either straight or at an angle. It may also vary according to the pitch, but not so distinctly as to make this an element for classification. - Fine toothing is to be chosen for cutting small sections with a profiled shape and tubular sections with thin walls (2-5 mm depending on the material). - Large toothing is suitable for cutting medium and large solid sections or fairly thick profiled or tubular sections (over 5 mm). "A" toothing: normal fine toothing "B" toothing: normal large toothing with or without shaving breaking incision "C (HZ)" toothing: large toothing with roughing tooth with rake on both sides, alternating with a finishing tooth without rake. The roughing tooth is 0.15-0.30 mm higher "AW" toothing: fine toothing with alternate side rake "BW" toothing: large toothing with alternate side rake #### Added toothing: disks made in this way are used for cutting non-ferrous metals, such as light alloys, and plastics, and above all in wood-working. The teeth are hard metal (HM) plates brazed onto the body of the disk; there are various types and shapes and, considering the vastness of the field, the topic is not developed further here. #### Tooth cutting angle Each tooth has two cutting angles: - α : front rake angle - γ : rear rake angle SHARPENING CIRCULAR SAWS | Т | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 12 | 14 | 16 | |---|------------|-----|-----|-----|-----|-----|-----|-------|------|-----|-----| | р | 1,3 | 1,6 | 2,1 | 2,5 | 2,9 | 3,4 | 3,8 | 4,2 | 5,1 | 5,9 | 7,2 | | d | 1,5 | 2 | 2,5 | 3 | 3,5 | 4 | 4,5 | 5 | 6 | 7 | 8 | | | h = 0,2 mm | | | | | | | n = 0 | 3 mm | 1 | | The rake varies especially according to the type of material to be cut. #### 9.7.1 - RECOMMENDED CUTTING PARAMETERS | | | | Mild steel $R = 350-500 \text{ N/mm}^2$ | Semi-hard steel
R = 500-700 N/mm ² | Hard steel
R = 750-950 N/mm ² | Extra-hard steel
R = 950-1000 N/mm ² | Heat-treated steel
R = 950-1300 N/mm ² | Austentic stainless steel R = 500-800 N/mm ² | Martensitic stainless steel R = 500-800 N/mm ² | Grey cast iron | Aluminium and alloys
R = 200-400 N/mm ² | Aluminium and alloys
R = 300-300 N/mm ² | Copper
R = 200-350 N/mm ² | Phosphor bronze
R = 400-600 N/mm ² | Hard bronze $R = 600-900 \text{ N/mm}^2$ | Brass $R = 200-400 \text{ N/mm}^2$ | Alloyed brass
R = 400-700 N/mm ² | Titanium and alloys $R = 300-800 \text{ N/mm}^2$ | Tubes and beams 0,05. D R = 300-600 N/mm ² | Tubes and beams 0,025. D R = 300-600 N/mm ² | |---------|---|----------|---|--|---|--|--|---|---|----------------|---|---|---|--|--|------------------------------------|--|--|---|--| | | UTTING ANG | ι Ες γ | 20° | 18° | 15° | 12° | 10° | 12° | 15° | 12° | 22° | 20° | 20° | 15° | 12° | 16° | 12° | 18° | 18° | 15° | | | OTTING ANG | α | 8° | 8° | 8° | 6° | 6° | 8° | 6° | 8° | 10° | 8° | 10° | 8° | 8° | 16° | 16° | 8° | 8° | 8° | | | | *T mm | 5 | 4 | 4 | 3 | 2 | 4 | 4 | 4 | 6 | 5 | 6 | 5 | 4 | 5 | 5 | 4 | 3 | 2 | | | 10 - 20 | Vt m/1' | 50 | 30 | 20 | 15 | 9 | 20 | 20 | 25 | 1100 | 200 | 400 | 400 | 120 | 600 | 500 | 50 | 19 | 35 | | | | Av mm/1' | 160 | 130 | 110 | 60 | 35 | 50 | 50 | 100 | 1800 | 400 | 600 | 800 | 160 | 1100 | 700 | 160 | 130 | 130 | | | | *T mm | 7 | 6 | 6 | 4 | 3 | 6 | 6 | 6 | 8 | 7 | 8 | 7 | 8 | 6 | 7 | 4 | 4 | 3 | | | 20 - 40 | Vt m/1' | 45 | 30 | 20 | 15 | 9 | 19 | 19 | 23 | 1000 | 180 | 350 | 400 | 110 | 600 | 400 | 45 | 18 | 33 | | ⋚ | | Av mm/1' | 150 | 120 | 110 | 60 | 33 | 45 | 45 | 100 | 1700 | 400 | 600 | 700 | 150 | 1100 | 600 | 150 | 120 | 120 | | (IN MM) | | *T mm | 10 | 9 | 8 | 6 | 4 | 8 | 8 | 8 | 12 | 10 | 11 | 10 | 8 | 10 | 10 | 6 | 5 | 4 | | | 40 - 60 | Vt m/1' | 45 | 25 | 18 | 14 | 9 | 18 | 18 | 22 | 900 | 160 | 300 | 350 | 100 | 550 | 350 | 45 | 18 | 30 | | CUT | | Av mm/1' | 140 | 110 | 100 | 50 | 30 | 45 | 45 | 90 | 1600 | 350 | 550 | 700 | 140 | 1000 | 600 | 140 | 110 | 110 | | | | *T mm | 12 | 12 | 11 | 9 | 6 | 11 | 11 | 11 | 16 | 12 | 14 | 12 | 10 | 12 | 12 | 10 | 6 | 5 | | BE | 60 - 90 | Vt m/1' | 40 | 25 | 17 | 14 | 8 | 17 | 17 | 20 | 800 | 160 | 250 | 300 | 90 | 550 | 350 | 45 | 17 | 30 | | 2 | | Av mm/1' | 130 | 110 | 50 | 50 | 28 | 40 | 40 | 80 | 1400 | 300 | 550 | 600 | 130 | 900 | 500 | 130 | 110 | 110 | | | | *T mm | 14 | 14 | 14 | 12 | 8 | 14 | 14 | 14 | 18 | 14 | 17 | 14 | 12 | 16 | 16 | 12 | 6 | 5 | | 으 | 90 -110 | Vt m/1' | 40 | 20 | 15 | 13 | 8 | 15 | 15 | 19 | 700 | 140 | 200 | 250 | 70 | 500 | 300 | 40 | 16 | 28 | | SECTION | | Av mm/1' | 110 | 100 | 80 | 45 | 25 | 40 | 40 | 880 | 1300 | 300 | 500 | 600 | 110 | 900 | 500 | 110 | 100 | 100 | | 뽕 | | *T mm | 16 | 16 | 16 | 14 | 10 | 16 | 16 | 16 | 20 | 16 | 18 | 16 | 14 | 18 | 18 | 14 | 8 | 6 | | | 110 -130 | Vt m/1' | 35 | 20 | 14 | 13 | 7 | 14 | 14 | 17 | 600 | 130 | 150 | 200 | 60 | 500 | 300 | 35 | 16 | 26 | | | | Av mm/1' | 100 | 90 | 70 | 45 | 25 | 35 | 35 | 70 | 1100 | 250 | 500 | 500 | 100 | 800 | 400 | 100 | 90 | 90 | | | | *T mm | 18 | 16 | 16 | 14 | 12 | 16 | 16 | 16 | 20 | 16 | 20 | 18 | 16 | 18 | 18 | 16 | 10 | 6 | | | 130 -150 | Vt m/1' | 30 | 15 | 12 | 12 | 7 | 12 | 12 | 16 | 500 | 130 | 120 | 150 | 50 | 450 | 200 | 30 | 15 | 24 | | | | Av mm/1' | 90 | 80 | 60 | 40 | 22 | 35 | 35 | 60 | 900 | 250 | 400 | 400 | 90 | 800 | 400 | 90 | 80 . | 80 | | RE | RECOMMENDED LUBRIFICANTS Emulsion - Cutting oil | | | | | | Dry | Kero
Di | sene
ry | l | Emulsior | ı | c | utting oi | l | Emu | ulsion | | | | #### 9.7.2 - DIAGRAM OF CUTTING SPEEDS ACCORDING TO DISK DIAMETER | ĸ | F | v | |----|---|---| | ., | _ | • | T Tooth pitch in millimetres Av mm/min Advance in millimetres per minute Vt m/min Cutting speed in metres per minute Az Tooth advance Ng/min Number of revs per minute Z Number of teeth on the disk p Tooth depth $\begin{array}{ccc} d & & \text{Diameter of the tooth fillet cone distance} \\ h & & \text{Tooth protrusion} \\ \gamma & & \text{Front rake} \\ \alpha & & \text{Rear rake} \\ \text{N/mm} & & \text{Ultimate tensile stress} \\ \text{a-f} & & \text{Flat parts of the cutting edge} \\ \mathcal{O} & & \text{Tube diameter or profile width} \\ \end{array}$ # 10 MACHINE COMPONENTS #### 10.1 - List of spare parts #### **REFERENCE N** #### **DESCRIPTION** | | Revolving arm Revolving arm locking pin Revolving arm locking bush Revolving arm locking lever Screw M8 | |----|---| | 8 | Countervice Grain M6 Bar stop rod Bar stop Vice | | 15 | Oiler Ø 5 Vice handwheel Pin Ø 6 Vice thread | | 23 | Burr-free plate Seal filter support flange Ring seeger Ø 42 I Tank cover filter Filter support flange Screw M5 Washer Coolant tap Coolant tube Screw M6 Tank filter Screw M8 Nut M8 Hinge pin Grain M6 Nut M6 | | 40 | Nut M16 Head lever Head lever handgrip Ring SM 30-40-7 Key 8x7x30 | #### **REFERENCE N** #### **DESCRIPTION** | 46 | Blade | |----|---| | 47 | Blade shaft flange stakes | | 48 | Blade shaft flange | | 49 | Screw M12 | | 50 | Fixed guard | | 51 | - | | 52 | Coolant tube | | 53 | Mobile guard | | 54 | - | | 55 | | | 57 | | | 58 | - | | 59 | | | 60 | * | | 61 | • • | | 62 | | | 63 | | | 64 | | | | Worm wheel retaining washer | | 66 | | | 67 | | | 68 | S | | 69 | | | 70 | 9 | | 71 | • | | 72 | | | 73 | | | 74 | | | 75 | - | | 76 | · · · · · · · · · · · · · · · · · · · | | 77 | | | 78 | motor moderning and otator | | 79 | Head gasket | | 80 | January Garage | | 82 | Motor head | | 83 | | | 84 | - | | 85 | | | 86 | | | 87 | | | 88 | - | | 89 | | | 90 | | | 91 | | | 92 | | | 93 | | | 94 | | | | . 5 | | | | - 251 Warning light HL - **252** Box - 253 Main switch QS1 - 254 Circuit breaker FR1 # 11 ELECTRIC DIAGRAMS ### 12 ### **TROUBLESHOOTING** This chapter lists the probable faults and malfunctions that could occur while the machine is being used and suggests possible remedies for solving them. The first paragraph provides diagnosis for TOOLS and CUTS, the second for ELECTRICAL COMPONENTS. #### 12.1 - Blade and cut diagnosis | FAULT | PROBABLE CAUSE | REMEDY | |---------------------|---|--| | TOOTH BREAKAGE | Too fast advance | Decrease advance, exerting less cutting | | | Wrong cutting speed | pressure
Change disk speed and/or diameter. | | | Wrong tooth pitch | See Chapter "Material classification and choice of disks" and the Table of cutting speeds according to disk diameter. Choose a suitable disk. See Chapter "Material classification and choice of disks". | | | Low quality disk Ineffective gripping of the part in the vice. | Use a better quality disk. Check the gripping of the part. | | | Previously broken tooth left in the cut Cutting resumed on a groove made previously. | Accurately remove all the parts left in. Make the cut elsewhere, turning the part. | | | Insufficient lubricating refrigerant or wrong emulsion | Check the level of the liquid in the tank. Increase the flow of lubricating refrigerant, checking that the hole and the liquid outlet pipe are not blocked. | | | Sticky accumulation of material on the disk. | Check the blend of lubricating coolant and choose a better quality disk. | | PREMATURE DISK WEAR | Wrong running in of the disk | See Chapter "Material classification and choice of disks" in the paragraph | | | Wrong cutting speed | on Running in the disk. Change disk speed and/or diameter. See Chapter "Material classification and choice of disks" and the Table of | | | Unsuitable tooth profile | cutting speeds according to disk diameter. | | | | Choose a suitable disk. See Chapter
"Material classification and choice of | | | Wrong tooth pitch | disks" in the paragraph on <i>Type of disks</i> . Choose a suitable disk. See Chapter "Material classification | | | Low quality disk Insufficient lubricating refrigerant | and choice of disks". Use a better quality disk. Check the level of the liquid in the tank. Increase the flow of lubricating refrigerant, checking that the hole and the liquid outlet pipe are not blocked. | | CHIPPED DISK | Hardness, shape or flaws in the material (oxides, inclusions, lack of homogeneity, etc) | Reduce the cutting pressure and/or the advance. | | AND THE | Wrong cutting speed | Change disk speed and/or diameter. See Chapter "Material classification and choice of disks" and the Table of cutting speeds according to disk | | | Wrong tooth pitch | diameter. Choose a suitable disk. See Chapter "Material classification | | | Vibrations Disk incorrectly sharpened | and choice of disks". Check gripping of the part. Replace the disk with one that is more | | | Low quality disk | suitable and correctly sharpened. Use a better quality disk. | | FAULT | ULT PROBABLE CAUSE | | |--|---|---| | | Incorrect emulsion of the lubricating refrigerant | Check the percentage of water and oil in the emulsion. | | DISK VIBRATION | Wrong tooth pitch Unsuitable tooth profile | Choose a suitable disk. See Chapter "Material classification and choice of disks". Choose a suitable disk. See Chapter "Material classification and choice of disks" in the paragraph on Type of disks. | | | Ineffective gripping of the part in the vice. Dimensions of the solid section too large with respect to the maximum | Check the gripping of the part. Abide by the instructions. | | | admissible cutting dimensions Disk diameter incorrect and/or too large | Decrease the disk diameter, adapting it to the dimensions of the part to be cut; the cutting part of the disk must not be too large for the shape of the part to be cut. | | RIDGES ON THE CUTTING SURFACE | Disk diameter incorrect and/or too large | Decrease the disk diameter, adapting it to the dimensions of the part to be cut; the cutting part of the disk must not be too large for the shape of the part to be | | (and the state of | Ineffective gripping of the part in the vice. Too fast advance Disk teeth are worn Insufficient lubricating refrigerant | cut. Check the gripping of the part. Decrease advance, exerting less cutting pressure. Sharpen the tool. Check the level of the liquid in the tank. Increase the flow of lubricating refrigerant, checking that the hole and the liquid outlet pipe are not blocked. | | | Toothing does not unload shavings well | Choose a blade with a larger tooth pitch that allows better unloading of shavings and that holds more lubricating refrigerant. | | CUTS OFF THE STRAIGHT | Too fast advance Ineffective gripping of the part in the vice Disk head off the straight Disk sides differently sharpened. Disk thinner than the commercial standard. Dirt on the gripping device | Decrease advance, exerting less cutting pressure. Check the gripping of the part which may be moving sideways. Adjust the head. Choose tool quality carefully in every detail as regards type and construction characteristics. Carefully clean the laying and contact surfaces. | | BLADE STICKS IN THE CUT | Too fast advance | Decrease advance, exerting less cutting pressure. | | | Low cutting speed Wrong tooth pitch Sticky accumulation of material on the disk. Insufficient lubricating refrigerant | Increase speed. Choose a suitable disk. See Chapter "Material classification and choice of disks". Check the blend of lubricating coolant and choose a better quality disk. Check the level of the liquid in the tank. Increase the flow of lubricating refrigerant, checking that the hole and the liquid outlet pipe are not blocked. | #### 12.2 - Electrical components diagnosis | FAULT | PROBABLE CAUSE | REMEDY | | |--|--|--|--| | THE GREEN PILOT LIGHT "HL" DOES NOT LIGHT UP | Lamp burnt out.
Power supply | Change it. Check: - phases - cables - socket - plug | | | | Short circuits
Main switch | Identify and eliminate. Check the switch. In case of electrical drop-out or overload cut-out, press switch to start the machine again. | | | | Circuit breaker | Reset the circuit breaker in case of overload cout-out. | | | MOTOR STOPPED WITH PILOT
LIGHT "HL" LIT | Socket and plug connecting the electric box/ microswitch in the handle Microswitch "SQ 1" in the handle | Check that the plug is correctly inserted and look for any bad connections inside the box. Check operation and/or efficiency; replace if broken. | | | | Motor "M 1" | Check that it is not burnt and that it turns freely. It may be rewound or changed. | | ### **NOISE TESTS** #### In accordance with point 1.7.4.f of the Machines Directive EEC 89/392 INTEGRATING PHONOMETER " DELTA OHM " mod. HD9019K1 serial n. 110996B295. MICROPHONE mod. HD 9019S1. SOUND GAUGER mod. HD 9101at 94dB/110dB a 1.000 Hz in class 1 according to IEC regulation n. 942 1988 and ANSI S1.40 1984. 3 measurements with the machine operating unloaded. - The microphone was been located close to the operator's head, at medium height. The weighted equivalent continuous acoustic pressure level was 77,6 dB (A). - The maximum level of the WEIGHTED instantaneous acoustic pressure C was always less than 130 dB. NOTE: with the machine operating, the noise level will vary according to the different materials being processed. The user must there-fore assess the intensity and if necessary provide the operators with the necessary personal protection, as required by Law 277/1991. #### **PLATES AND LABELS** | NOTE: | | |-------|---| | | | | | | | | | | | _ | _ | | | | | | | | | |